
Effective Implementation of Energy
Aware Polarization Diversity for IoT
Networks Using Eigenvector Centrality

Sakil Chowdhury, Laurent Hébert-Dufresne, and Jeff Frolik

Abstract The Internet of Things (IoT) is one the most promising area of applica-
tions for complex networks since we know that both the efficiency and fidelity of
information transmission rely critically on our understanding of network structure.
While antenna diversity schemes improve reliability and capacity for point-to-point
links of an IoT network that employs multi-polarized antennas, it is currently unclear
how implementation should depend on the network structure of the IoT and what
impact structure-dependent implementations will have on the energy consumption
of IoT devices. We propose an antenna diversity scheme that leverages local network
structure and a distributed calculation of centrality to reduce power consumption
by 13% when compared to standard selection diversity technique. The proposed
approach exploits distributed eigenvector centrality to identify the most influential
nodes based on data flow and then limits their antenna switching frequency
proportionally to their centrality. Our results also demonstrate that by taking routers’
centrality metric into account, a network can reduce antenna switching frequency
by 17% while ensuring approximately 99% packet delivery rate. More broadly, this
study highlights how network science can contribute to the development of efficient
IoT devices.

1 Introduction

The Internet of Things (IoT) interconnects heterogeneous entities like sensors,
actuators, wearable items and phones to develop an integrated system where these
multipurpose devices can monitor their surrounding environment, react to a certain
event, collect sensory data and forward the data in multi-hop fashion to back-
end systems for further processing [1]. The applications of IoT span from small
scale implementation such as patient monitoring, smart homes, to large scale
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implementations of industrial monitoring, smart farming, smart cities, etc. [2, 3].
In many of these potential applications, IoT devices are deployed in environments
which are not ideal for wireless communication. Environments such as industrial
facilities are particularly harsh where reflection, diffraction and scattering from
metal structures cause distortion to the radio signal, known as multipath fading [4].
Signal attenuation, phase shifting and inter-symbol interference caused by multipath
fading significantly degrade reliability and throughput of the network.

Multi-polarized antennas are an effective solution to overcome multipath effects
as they allow the receiver to have multiple copies of the transmitted signal by
using orthogonally polarized antenna elements [5]. However, the problem is then to
choose which antenna polarization should be used given local conditions, including
network structure. Selection diversity is the simplest diversity technique used in
conjunction with multi-element antennas in which the antenna polarization having
the highest signal strength is chosen for transmission or reception. Due to cost
constraints and limited processing capabilities of IoT devices, selection diversity
uses a single radio-frequency (RF) chain and switches between polarizations to
determine the ‘best’ polarization using a RF switch. Existing works in the literature
related to selection diversity schemes primarily focus on ensuring link reliability,
minimizing low bit error rate (BER) and attaining high signal-to-noise (SNR)
ratio. For example, the authors of Ref. [6] developed an algorithm with quartic
complexity to select optimal subset of antennas that ensures maximum SNR for
systems with many transmit antennas. In Ref. [7], a low-complexity generalized
selection combining (GSC) scheme is introduced, which is able to match the
performance of a full diversity system in terms of outage probability and symbol
error rate while utilizing only a subset of the available antennas to transmit and
receive. In Ref. [8], capacity maximizing suboptimal antenna selection algorithm for
medium to high SNRs is proposed to determine the transmit antenna in a Rayleigh
fading environment. However, all the mentioned works required either multiple RF
chains to be active simultaneously or the device to solve complex optimization
problems, which is not suitable for low-cost, constrained IoT devices. Moreover, the
network structures of IoT systems are often complex and hierarchical, suggesting
that diversity technique might be an interesting avenue of research.

In multi-hop communication based routing, router nodes that are near the base
station relay the data collected by the sensor nodes that are further away from the
base. Thus, in this network, the closer a router is to the base, the higher its data
traffic load will be, resulting in frequent use of selection diversity to select antenna
polarization. This will cause faster depletion of energy of the routers with high data
traffic compared to the routers with less traffic, i.e., far away routers. Intuitively, in
an IoT network operating in multipath environment, the time between consecutive
data transmission by a sensor node can be large compared to the coherence time
(time over which the channel changes significantly) of the channel and thus, each
transmission sees independent fading. On the contrary, as routers manage packets
from multiple sensor nodes, the coherence time for routers is large relative to the
time between consecutive transmission/reception which implies that the fading seen
by packets are correlated. For example, IoT networks aimed at wildfire detection,
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forest environment and agriculture monitoring require geographically dispersed
sensor nodes to transmit sensed information periodically at a low data rate. The base
station can provide valuable forecast, improve safety and efficiency by integrating
the sensed data that is relayed through routers [9, 10]. This motivates us to consider
controlling the use selection diversity according to nodes’ data traffic load as
approximated by their position in the network structure. Indeed, an IoT network
can be effectively represented as a complex network [11], a graph object whose
vertices correspond to sensor or router nodes while edges stand for data transmission
between nodes. More specifically, we consider the problem of finding routers with
high data traffic in an IoT network as a problem of finding the crucial nodes in a
complex network. Then, we can leverage centrality metrics [12], which rank the
nodes of a network based on their importance in a network, to identify highly
congested routers. Our focus in this paper is to apply ideas from complex network
science in order to implement a device-specific diversity scheme that considers
nonuniform depletion of energy of routers in an IoT network.

By combining complex network theory and the concept of antenna diversity,
we propose a network-wide diversity technique, where devices will use selection
diversity in a periodic manner instead of using it before every transmission or
reception and the period will be proportional to their centrality. In summary, the
main contributions of this paper are as follows.

1. We employ the concept of eigenvector centrality to determine crucial nodes
in an IoT network consisting of a large number of stationary nodes from
the view point of data packet transmission and reception. The centrality is
calculated by autonomous sensor and router nodes in a distributed manner
which reduces computation complexity and ensures low-memory usage for low-
resource, energy-constrained IoT devices compared to centralized computation.

2. In contrast to the conventional selection diversity technique that allows all
devices to switch antenna element before every transmission or reception, our
proposed energy-aware diversity scheme controls the switching of devices such
that low-scoring routers are allowed to switch antenna more frequently compared
to the high-scoring ones and hence, reduces excessive switching and is able to
minimize antenna switching by at least 17%.

3. We demonstrate through simulation that the reduction of excessive antenna
switching achieved by our Distributed Eigenvector Centrality (DEC) diversity
approach decreases energy consumption of routers by at least 13% compared to
simple network-wide selection diversity approach, without degrading network
reliability.

The paper is organized as follows: Sect. 2 reviews related works. In Sect. 3, we
give an overview of the type of target IoT networks and deployment environment
considered. Section 4 introduces a distributed calculation of eigenvector centrality
and proposes an implementation for IoT network in which an individual antenna
switching rate is controlled based on its centrality in the network structure. Section 5
describes the comparison between our proposed centrality based diversity scheme
and simple selection diversity scheme and Sect. 6 concludes the paper.
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2 Related Works

A network consists of a set of nodes connected by edges which can be directed or
undirected, weighted or unweighted. Centrality is often used in complex network
systems to identify the relative influence of a node or edge with respect to the entire
network. Various centrality measures such as betweenness, closeness and eigen-
vector centrality have been studied in the literature based on application context and
different characteristics of a network. Betweenness centrality determines the amount
of influence a node has over the information flow of a network. It first calculates the
shortest path between every pair of nodes in a network and assigns a centrality
to nodes based on how frequently they lie along shortest paths [13]. Closeness
centrality is defined as the inverse of the average distance between a given node
and all other nodes in the network [14] such that high closeness centrality indicates
central nodes that have shorter distances to other nodes. However, most centrality
measures are calculated based on global topology information which is prohibitive
for memory-constrained, low-cost devices of an IoT network with a large number
of nodes. Another popular measure is eigenvector centrality, which calculates a
node’s importance in a network by summing the importance of its neighbors [12].
Eigenvector centrality is defined based on the eigenvector of the network adjacency
matrix such that the centrality x satisfies Ax = λx where A is the N ×N adjacency
matrix, x is the eigenvector associated to the greatest eigenvalue λ of A and N is the
number of nodes.

Although a node which is central by one centrality measure may be central
by other centrality measures, this is not necessarily always true. Compared to
betweenness centrality (measures the number of paths that pass through each node)
and closeness centrality (based on average distances), eigenvector centrality is based
on the idea that a central node is connected to other central nodes, which is a natural
definiton for centrality in an IoT network. However, one of the major disadvantage
of eigenvector centrality measure is that the calculation is quite complex and
complexity grows as N increases which is challenging for battery-powered nodes
with limited storage and processing capabilities. In this present work, we utilize
the concept of eigenvector centrality and leverage the tree structure of our IoT
networks for a distributed computation of centrality, where a node relies on its next
hop neighbors only to compute its individual centrality. Restricting the topology
means nodes do not have to obtain information about far-away nodes which reduces
resource usage.

Recently, several studies have focused on exploiting eigenvector centrality in a
distributed way. For example, Ref. [15] presented a reception-equal rate allocation
strategy for cooperative streaming so that all nodes receive the stream with the
minimal global use of resources by using a distributed version of the eigenvector
centrality. Although the proposed centrality measure can be computed distributedly,
every node still needs to be aware of the full network topology to calculate
the centrality. In Ref. [16], the authors studied a distributed computation of the
PageRank algorithm, a variant of the eigenvector centrality. In our work, we focus
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on a distributed version of the classic eigenvector centrality, which can be measured
individually by each node of a directed loop-free wireless network consisted of
resource constrained devices.

3 System Model

Due to scalability, low cost and ease of deployment, IoT networks are gaining
increasing interests in the research community. Depending on the particular appli-
cation, different network architecture may be of interest. We consider an IoT
network, where both nodes and routers are autonomous and characterized as energy-
constrained devices with limited memory and poor processing capabilities. Routers
function as data aggregators and relay the received data to the base station, which
has unlimited power supply and is far from the sensing area, in a directed multi-hop
fashion through other routers. In addition, all the deployed devices are only aware of
their next hop neighbors and have no global knowledge of network. An example of
such network is a time-driven IoT network, used to collect spatio-temporal readings
of various environmental parameters through densely deployed sensor nodes.

We assume that all devices are equipped with tripolar antenna consisting of three
orthogonal mutual collocated antenna elements to create vertical (V) polarization,
horizontal (H) polarization and a third polarization (W) which is perpendicular to
the other two [16].

Figure 1 demonstrates available channel gains for such systems which can
be described using a 3 × 3 complex channel matrix. During transmission, we
assume that the signal gets affected by Rayleigh fading, which is independent
and identically distributed on each antenna element. Both nodes and routers use
selection diversity to determine the best polarization for transmission and reception.

Fig. 1 Block diagram of
transmission and reception
using tripolar antenna
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To reduce hardware complexity, a single RF chain is used by the tripolar antenna
which changes antenna element using a RF switch. IoT devices receive pilot
symbols using different polarization from their next hop router to estimate the
channel gain of all three antenna elements by means of received signal strength.
The receiver antenna then selects one of the polarizations based on its estimates. The
base is assumed to be unaffected by multipath fading and uses vertical polarization
only for transmission.

4 Distributed Eigenvector Centrality

Classic eigenvector centrality, which measures how well connected a node is to
other well-connected nodes in the network, is computed globally. To facilitate faster
computation and reduce memory usage of resource-constrained IoT devices, we
use distributed eigenvector centrality (DEC), where each device (sensor or router)
will calculate their own centrality. To model the IoT network, we let G(V,E) be
a directed graph with N sensor nodes and R router nodes, where V is a set of
vertices representing all devices of the network and E is a set of edges representing
links between the devices. To calculate the centrality of node k with neighbor set
{1, 2, . . . , j}, we define an edge-weight matrix W, which is a j × 1 column matrix,
and neighbor-centrality matrix C̄vk

, which is a 1× j row matrix, as,

W =

⎡
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w1,k

w2,k

...

wj,k

⎤

⎥
⎥
⎥
⎥
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⎦

j×1

and C̄vk
= [cv1 cv2 . . . cvj

]
1×j

(1)

here weight of each edge wi,k is either 1 or 0 and i is one hop neighbor of node k.
In the context of our network, a directed edge from node i to node k indicates data
packet flow direction from i to k. If there is an edge from node i to node k, then
wi,k = 1, otherwise wi,k = 0. Also, cvi

denotes the centrality of the node i. The
proposed centrality scheme in initialized by awarding one centrality point to each
vertices. After that each node calculates its own centrality by summing the centrality
of its neighbor nodes that have edges directed towards them. Thus, DEC for node
k is defined as the weighted sum of the centralities of all its neighbor sensor nodes
and routers and can be written as

cvk
= 1+WC̄vk

= 1+
j∑

i=1,i �=k

wi,kcvi
(2)

Figure 2 illustrates an example of centrality calculation using two routers and five
sensors. Sensor nodes n1, n2 and n3 do not have any directed edge towards them and
hence each sensor has centrality 1. On the other hand, R1 has a centrality of 4 since
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Fig. 2 Sample network of
two routers and five sensor
nodes with routers depicted in
green and sensors depicted in
light blue color

1 1

1
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R1 n1

n2

n3n4

R2

n5

Cn4 = 1

Cn5 = 1

CR2 = 7 CR1 = 4

Cn1 = 1

Cn2 = 1
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Fig. 3 An illustration of data
transmission by sensors and
router. Solid circles indicate
usage of selection diversity
before transmission while
empty circles indicate no
antenna switching occurred
and colors represent different
polarizations. Top: Router R1
uses conventional selection
diversity Bottom: R1 uses
centrality based selection
diversity

there are three directed links from three neighbor nodes each having a centrality of
1. Although R2 is a neighbor of R1, it does not contribute to the centrality of R1 as
there is no directed edge from R2 to R1. Similarly R2 has a centrality of 7 since it
has directed edges from neighbors with centrality 1, 1 and 4.

Under the assumption that each device knows their type and total number of
devices present in the network, it can compute their centrality by only using local
interactions with its neighbor. Our goal is to allow nodes to limit their antenna
switching based on their centrality. We can then define the interval slot for node k as

$sk% = 1

(N + R)
αcvk

(3)

where, N and R are the total number of sensors and routers, respectively. Also, sk
is the number of transmissions during which a node will not use selection diversity
unless the signal strength of the currently used antenna branch falls below the
threshold and α is an integer that denotes the interval parameter. We note that the
interval slot, i.e., the waiting period between two consecutive antenna switching is
proportional to a node’s centrality and it increases for large values of α.

Figure 3 presents an illustration of transmission rates between nodes and a router
for the example network presented in Fig. 2, where sensor nodes (denoted as n1, n2,
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and n3) are transmitting data packets to the router R1 at different rates. We note that,
when R1 uses conventional selection diversity (see Fig. 3 Top), it requires antenna
switching before every transmission. On the other hand, when R1 employs centrality
based switching (see Fig. 3 Bottom), antenna checks for best polarization among the
three elements only after some fixed (3 in this example) transmission slots. For high
centrality routers, the interval between consecutive receptions and transmissions
will be smaller and hence it’s highly likely that the channel conditions will not
change between consecutive transmissions. Thus, restricting the use of selection
diversity for such routers before every transmission will reduce excessive switching
and minimize energy consumption at the same time. With a time complexity scaling
linearly with the number of vertices in the network, DEC offers fast computation
and requires little memory usage. Moreover, with DEC, any changes in network
topology can be dealt locally as only a part of nodes need to recalculate their
centrality.

4.1 Centrality Based Diversity Scheme

We now describe the infrastructure of the IoT network that is used for simulation
and also how experimental data is incorporated to assess the performance of the
proposed scheme in a Rayleigh-fading environment. The network is initialized
with random sensor node deployment and the base is located at one corner of
the monitoring area. The routers are equidistant form one another and when
a router joins the network, it sends a multicast packet to discover its adjacent
sensors and routers and creates a routing table based on the received response.
The time difference between two consecutive data packet transmission by sensor
nodes is varied randomly between 1–10 s. Centrality is calculated in a bottom-up
approach, where each sensor and router use their own routing table to calculate
their centrality and share the score to their next level router only. Once calculated,
devices will keep using the centrality unless there are changes in their neighborhood.
If a new sensor or router joins, then their neighboring devices update centrality.
After computing centrality, devices determine their individual switching rate, which
defines how often a device will use selection diversity to select the best antenna
element. Once a device selects a polarization for transmission/reception, it may
need to wait for a couple of transmission slots to use selection diversity again and,
importantly, this waiting period is chosen proportionally to its centrality. During the
interval, the antenna will keep monitoring the signal strength of the currently used
antenna branch and if the branch falls below a predetermined threshold, it will use
selection diversity to select the best branch among the three branches. To asses the
performance under a setting similar to real world environment, we exploit the signal
strength and energy consumption data obtained experimentally, as described in Ref.
[16], using embedded devices equipped with tripolar antennas in a high multipath
environment.
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5 Performance Evaluation

In this section, we describe the simulation parameters used to evaluate the perfor-
mance of the proposed diversity scheme. Furthermore, we also compare the results
with existing selection diversity technique.

5.1 Simulation Model

We present the results for a case with 50 sensors and 10 routers as depicted in
Fig. 4a, where devices are using different antenna polarization at a certain time. We
note that, routers that are closer to the base station see substantially more data traffic
compared to the routers that are far away from the base or on the edge of the sensing
area. Figure 4b demonstrates the use of DEC, where high centrality is assigned to the
routers that are closer to the base and tend to aggregate more data packets compared
to routers that are far from the base.

In order to evaluate the performance of the proposed centrality based diversity
scheme, we consider an IoT network that performs periodic data collection through
sensor nodes based on IEEE 802.15.4 protocol. Sensor nodes are static and unable to
relay data from other nodes. Routers receive data from other nodes and forward the
data to the next hop routers in a tree-based routing fashion. We built a discrete event
simulator based on Matlab where a rectangle region is used to deploy the nodes. The
default parameters used in our simulation are presented in Table 1.

Fig. 4 (a) Basic architecture of an IoT network consisting of 50 sensors and 10 routers. Colors
represents different polarizations, sizes represents different type of IoT devices. (b) Representation
of the network presented in (a) using DEC. Color coding and size indicates centrality of sensor and
router nodes. Less central nodes have smaller size and lighter color compared to more central nodes
which have larger size and darker colors
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Table 1 Simulation parameters

Parameter Value

Area of deployment 300 × 300 m2

Number of sensors 50

Number of routers 10

Energy: transmission 0.01 J

Energy: reception 0.008 J

Energy: switching 0.001 J

Energy: pilot packets (transmission/reception) 0.002 J

Data packet size 32 bytes

Data rate 250 kbit/s

Pilot packet size 16 bytes

Battery capacity 18.7 kJ

Frequency 2.4 GHz

MAC protocol 802.15.4

Number of repetitions 10

We then run a comparative analysis between our proposed scheme and selection
diversity technique. Three performance metrics are used: switching frequency,
packet delivery ratio and energy consumption. In the baseline scenario, we consider
a network, where each device uses selection diversity to determine the best antenna
element for transmission and reception. To analyse the performance of our proposed
model, we experiment with different network sizes in terms of the number of sensors
and routers.

5.2 Simulation Results

Figure 5 presents our results on the impact of the centrality metric in decreasing
antenna switching rate. We focus on the routers only since sensor nodes are assumed
to be unable to perform data forwarding. Figure 5a illustrates the centrality of
routers calculated based on Eq. (2) and normalized by the total number of devices
60. We note that few routers stand out amongst other routers due to high centrality
and thus, serve as central points of data aggregations. We also see that the high
scoring routers receive and forward more data traffic, which deplete their energy
rapidly, compared to other routers with low centrality values. The results also show
the heterogeneity among routers in terms of data traffic through them and hence,
reinforces the requirement of node-specific diversity scheme. Figure 5b shows the
effect of using interval parameter α, where the antenna switching of routers with
high centrality are restricted compared to other routers. Even though the number of
switching varies for routers for different simulation runs, we observe that when α is
set to 2, our proposed diversity scheme decreases antenna switching approximately
by 17% compared to the conventional selection diversity.



Energy Aware Polarization Diversity for IoT Networks 255

Fig. 5 (a) The number of packets received by routers, plotted against their normalized centrality.
It can be seen that routers which receive more data packets have higher centrality. (b) Comparison
between selection diversity and the proposed technique in terms of switching frequency. Routers
are plotted in ascending order based on the number of switching. Note that the number of switching
is decreased for high scoring routers
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Fig. 6 Comparison between selection diversity and the proposed technique for different values of
α in terms of (a) packet drop rate and (b) energy consumption rate, for a network consisting of
50 sensor nodes and 10 routers. As can be seen in the figure, for α = 3, our proposed scheme
has approximately 99% successful packet delivery rate and reduces energy consumption by 13%
compared to the selection diversity technique

Figure 6 demonstrates the use of interval parameter by comparing the centrality
based diversity scheme with selection diversity technique in terms of packet delivery
and energy consumption for different values of α. From Fig. 6a, we note that
when 2 ≤ α ≤ 3, the proposed centrality based diversity scheme is on par
with selection diversity technique in terms of packet delivery rate. However, as
α increases, packet drop rate increases for our proposed scheme compared to the
selection diversity. Since a large value of α increases the waiting time between
consecutive antenna polarization selection, network reliability decreases. Figure 6b
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demonstrates the influence of α on the energy consumption of routers, where energy
consumption includes power consumed due to antenna switching, transmission
and reception of both pilot packets and data packets. Since a large value of α

implies that more routers have reduced switching rate, the energy consumption
decreases considerably. However, restriction in updating antenna polarization for
longer period results in greater packet loss compared to the selection diversity.
Therefore, selecting an appropriate value of α is crucial for achieving satisfactory
performance in terms of reliability and energy efficiency.

6 Conclusion

In this work, we present an energy-aware polarization diversity scheme based
on node centrality metric for IoT networks. We consider a typical IoT network
composed of sensor devices that periodically sense data and utilizes tripolar antenna
to forward it to the base station through routers in a multi-hop fashion. The proposed
diversity scheme leverages distributed eigenvector centrality metric, calculated by
all IoT devices individually without requiring global information about the network
topology, to measure a router’s importance based on the importance of its connected
neighbors. The identification of most influential router nodes allows us to employ
a node-specific diversity scheme that lets low scoring routers to switch polarization
more frequently compared to high scoring routers and hence decreases excessive
switching over the whole network.

Our results suggest that methods to rank the influence of different nodes in
complex networks can be applied in IoT networks to save energy consumption
without compromising fidelity. Indeed, our simulation results demonstrate that the
proposed centrality based approach reduces switching by at least 17% compared
to the approach of utilizing selection diversity for all sensor and router nodes
irrespective of their roles. This shows that the proposed scheme is able to lessen
energy consumption by at least 13% compared to the conventional selection
diversity while offering similar network reliability. In future work, we plan to
implement the proposed scheme in real devices using various topologies and routing
strategies.
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